线性直流稳压电源设计报告

线性直流稳压电源的设计与分析

摘要

线性直流稳压电源是各类电子设备中不可或缺的关键组成部分,其性能直接影响电子设备的稳定性和可靠性。本文旨在设计并分析一款输出电压0-15V可调、最大输出电流1.5A的线性直流稳压电源。论文首先阐述了线性直流稳压电源的基本工作原理、组成模块及其关键性能指标,对比分析了固定输出、可调输出及低压差(LDO)等不同类型线性稳压器的特点与适用场景。在此基础上,论文详细介绍了电源各功能模块的设计方案与元件选型过程,包括电源变压器的次级电压与VA定额计算、整流桥的选择、滤波电容的参数计算(重点考虑纹波抑制、耐压、ESR及纹波电流),以及采用LM317可调集成稳压器为核心的稳压电路设计,其中涵盖了输出电压调节电阻、输入输出电容、调整端旁路电容及保护二极管的选择依据。此外,论文还探讨了必要的保护电路设计,如利用LM317内部的过流和热过载保护功能,并对关键元件(特别是稳压器)的散热设计进行了计算与考量。为了验证设计方案的可行性与性能,本文利用LTSpice(或Multisim)仿真软件对所设计的电源电路进行了全面的性能仿真与分析,包括直流输出特性、输出纹波电压、线性调整率、负载调整率、瞬态响应及电源效率等。仿真结果表明,所设计的线性直流稳压电源能够满足预定的性能指标要求。最后,对设计工作进行了总结,指出了当前设计中可能存在的不足之处,并对未来线性稳压电源技术的发展趋势进行了展望。本文的研究为线性直流稳压电源的设计与实践提供了一套完整的方法和参考。

关键词: 线性电源 直流稳压 电路设计 LM317 纹波抑制 过流保护

引言

在现代电子技术飞速发展的时代,各种电子设备已经渗透到科研、工业、医疗、通信以及日常生活的方方面面。这些电子设备,无论是简单的便携式装置还是复杂的大型系统,其稳定可靠的运行都高度依赖于高质量的直流电源。直流电源将交流电网提供的交流电或电池提供的不稳定直流电转换成电子设备所需的稳定直流电压和电流。其中,线性直流稳压电源作为一种基础且重要的电源类型,因其结构相对简单、输出纹波小、噪声低、瞬态响应快等优点,在许多对电源质量要求较高的场合,如精密仪器、传感器电路、音频放大器以及各种实验电路中,仍然扮演着不可替代的角色。

尽管开关电源(SMPS)因其高效率、小体积等优势在许多领域得到了广泛应用,但线性电源固有的低噪声特性使其在模拟电路和高精度测量等领域依然是首选方案。因此,深入理解线性直流稳压电源的设计原理、掌握其关键参数的计算方法、熟悉常用元件的选择及其保护措施,对于电子工程技术人员和相关专业的学生而言,具有重要的理论意义和实践价值。通过设计和制作一个性能良好的线性直流稳压电源,不仅可以巩固和深化对模拟电子技术、电路理论等基础知识的理解,还能培养分析问题、解决问题以及工程实践的能力。

本交互式报告将引导您了解线性直流稳压电源的理论基础、详细设计步骤、元件选择、性能仿真分析及结论。您可以通过顶部导航栏探索不同章节的内容。

线性直流稳压电源理论基础

本章节详细介绍线性直流稳压电源的核心理论,包括其基本工作原理和组成模块,探讨不同类型稳压器的特性与对比,并深入解析衡量电源性能的关键指标,最后概述其主要应用领域和未来发展趋势。这些基础知识是理解后续设计方案和性能分析的关键。

2.1 工作原理与基本组成

线性直流稳压电源的核心任务是将不稳定的交流或直流输入电压转换为稳定、纯净的直流输出电压。其“线性”指的是其内部关键调整元件工作在线性放大区,通过连续调节自身阻抗来维持输出电压的稳定。

基本组成框图

图2.1 线性直流稳压电源基本框图 (概念)

交流输入
电源变压器
整流电路
滤波电路
稳压电路
直流输出

这是一个概念性的流程图,展示了线性电源的主要处理阶段。

各组成部分的功能如下:

  • 电源变压器: 将输入的交流市电电压降低到适合后续电路处理的较低交流电压值,并实现电气隔离。
  • 整流电路: 将交流电压转换为单向脉动的直流电压。常用全波桥式整流。
  • 滤波电路: 平滑整流后的脉动直流电压,减小纹波成分。常用大容量电容滤波。
  • 稳压电路: 核心部分,在输入电压或负载变化时维持输出电压恒定。通过调整元件和负反馈控制实现。

串联型线性稳压器内部结构

图2.2 串联型线性稳压器内部结构框图 (概念)

基准电压源 (VREF)
误差放大器
调整元件 (Pass Element)
反馈网络

展示了稳压器内部如何通过比较反馈电压和基准电压来控制调整元件,从而稳定输出。

其工作原理基于负反馈:输出电压通过反馈网络采样后与稳定的基准电压比较,误差信号被放大后去控制串联调整管的导通程度,从而使输出电压稳定在设定值。多余的能量在调整管上以热量形式耗散。

2.2 主要类型与特性比较

线性稳压器主要分为固定输出、可调输出和低压差(LDO)稳压器。

2.2.1 固定输出稳压器

如78xx系列(正电压)和79xx系列(负电压)。输出固定的电压值(如5V, 12V)。使用简单,外围元件少,成本低,内置保护。缺点是输出电压不可调,压差电压较高(通常2-2.5V)。

2.2.2 可调输出稳压器

如LM317(正电压)和LM337(负电压)。输出电压可通过外部电阻网络在一定范围内调节(如LM317为1.25V-37V)。灵活性高,同样内置保护。压差电压也较高。

2.2.3 低压差稳压器 (LDO)

核心特点是极低的压差电压(可小于1V,甚至几十毫伏)。这使得LDO在输入电压接近输出电压时仍能高效工作,非常适用于电池供电设备。通常具有低静态电流、低噪声和高PSRR等优点。部分LDO对输出电容的ESR敏感。

表2.1 线性稳压器主要类型对比

特性固定输出稳压器 (如78xx)可调输出稳压器 (如LM317)低压差稳压器 (LDO)
输出电压固定值可外部调节固定或可调
压差电压较高 (2-3V)较高 (2-3V)极低 (<1V)
静态电流 (IQ)几mA几mA通常较低, 可达nA级
主要优点简单, 成本低输出灵活压差低, 效率相对高
主要缺点不灵活, 压差高压差高部分对输出电容ESR敏感

2.3 关键性能指标详解

  • 输出电压精度: 实际输出电压与标称值之间的偏差。
  • 线性调整率: 输入电压变化时,输出电压保持稳定的能力。
  • 负载调整率: 负载电流变化时,输出电压保持稳定的能力。
  • 电源抑制比 (PSRR): 抑制输入端交流纹波传递到输出端的能力,通常用dB表示,值越大越好。
  • 输出纹波与噪声 (PARD): 输出直流上叠加的周期性交流成分和随机噪声的总和,通常用mVp-p或mVrms表示。
  • 压差电压 (VDO): 维持正常稳压所需的最小输入输出电压差。LDO的关键特性。
  • 静态电流 (IQ): 稳压器自身消耗的电流,对电池供电设备很重要。
  • 效率 (η): 输出功率与输入功率之比。线性稳压器效率约为 VOUT/VIN
  • 瞬态响应: 负载电流或输入电压突变时,输出电压的恢复特性(过冲、下冲、稳定时间)。
  • 热阻 (θJA, θJC): 衡量器件散热能力的参数,影响最大允许功耗。

2.4 应用领域与发展趋势

应用领域

  • 噪声敏感型应用:精密模拟电路、RF电路、音频设备。
  • SMPS后级稳压:滤除开关噪声,提供纯净电压。
  • 低功耗和便携式设备:特别是LDO,用于电池供电产品。
  • 简单、低成本应用。
  • 实验室和测试设备。

发展趋势

  • LDO性能持续优化:更低压差、更低静态电流、更高PSRR、更低噪声。
  • 封装技术与集成度:更小封装,集成更多功能。
  • 瞬态响应改善:适应现代数字芯片的动态负载需求。
  • 无电容LDO:进一步减小方案尺寸和成本。
  • 智能化与数字化:融入数字控制和监测功能。

线性直流稳压电源设计方案与元件选择

本章将详细介绍一个0-15V可调、1.5A输出的线性直流稳压电源的具体设计方案,包括总体要求、各个功能模块(电源变压器、整流、滤波、稳压、保护、散热)的设计计算与核心元件(如LM317)的选型依据。

3.1 总体设计要求与参数指标

  • 输入电压: 220V AC, 50Hz。
  • 输出电压范围: 1.25V 至 15V DC 连续可调 (以LM317为核心)。
  • 最大输出电流: 1.5A。
  • 输出纹波电压: 满载时 < 10mVpp。
  • 线性调整率: 输入电压±10%变化时, 输出电压变化 < ±0.5%。
  • 负载调整率: 空载到满载(1.5A)时, 输出电压变化 < ±1%。
  • 保护功能: 具备过流和短路保护 (主要利用LM317内部功能)。

3.2 电源变压器模块设计

3.2.1 次级电压计算

目标:确保LM317在最低输入市电、最大输出电压(15V)、满载(1.5A)时仍有足够压差(约2.5V)。

考虑因素:LM317最大输出(15V) + LM317压差(2.5V) + 整流桥压降(约2.2V) + 滤波纹波谷值预留(约1V)。

Vcap_valley_min = 15V + 2.5V = 17.5V

Vsec_peak = Vcap_valley_min + Vrect_drops + Vripple_pp/2 = 17.5V + 2.2V + 1V = 20.7V

考虑市电-10%波动,额定输入下,次级满载有效值 Vsec_rms_rated_load ≈ 16.27V

考虑变压器10%负载调整率,标称空载次级电压 Vsec_rms_no_load ≈ 18.08V

结论:选用次级额定输出电压为 **18V AC** 的变压器。

3.2.2 VA定额计算

Isec_rms ≈ 1.8 × IDC_load_max = 1.8 × 1.5A = 2.7A

VAtransformer = Vsec_rms_rated_load × Isec_rms = 16.27V × 2.7A ≈ 43.93VA

结论:选用 **50VA** 的变压器,留有裕量。

3.2.3 铁芯类型与屏蔽

推荐选用**环型变压器**,因其漏磁小、效率高。考虑增加初、次级间的静电屏蔽层以减少共模噪声。

3.3 整流电路模块设计

3.3.1 整流方式选择

选用**全波桥式整流电路**,因其变压器利用率高,输出纹波较小。

3.3.2 整流二极管选型

  • 峰值反向电压 (PIV): > 56V (考虑市电波动和裕量)。选用 **100V** 或更高。
  • 平均正向电流 (IF(AV)): 每个二极管约0.75A。选用额定电流 **3A** 的二极管 (如1N5401) 或等效整流桥 (如GBU4B)。
  • 正向浪涌电流 (IFSM): 1N540x系列约200A,满足要求。

3.4 滤波电路模块设计

3.4.1 电容滤波计算

目标:滤波电容处的峰峰纹波 Vripple_pp_filter ≈ 1.5V

C ≈ IDC_load_max / (fripple × Vripple_pp_filter) = 1.5A / (100Hz × 1.5V) = 10000 µF

耐压值:大于空载最高峰值电压(约26.6V),选用 **35V** 或 **50V**。

重要参数:低ESR,足够的纹波电流额定值。

结论:选用 **10000µF/50V** 电解电容,并联0.1µF陶瓷电容改善高频特性。

3.4.2 LC/$\pi$型滤波器设计(可选)

若对纹波有更高要求,可增加LC或π型滤波。本设计初步采用大电容滤波,后续仿真验证纹波是否达标。

3.5 稳压电路模块设计 (LM317)

3.5.1 集成稳压器选型

选用 **LM317** 三端可调正电压集成稳压器。

3.5.2 LM317参数设置与外围元件计算

VOUT ≈ 1.25V × (1 + R2/R1)

  • R1: 通常选用 **240Ω** 精密电阻。
  • R2: 实现1.25V-15V输出,R2max ≈ 2640Ω。可选用 **220Ω固定电阻串联2.5kΩ多圈精密电位器**。
  • Cin: **0.1µF** 陶瓷电容,靠近LM317输入端。
  • Cout: **1µF钽电容或10µF电解电容**,靠近输出端,改善瞬态响应。
  • Cadj: **10µF/50V** 电解电容,接调整端与地,提高PSRR。
  • 保护二极管 D1 (输出到输入) 和 D2 (调整端到输出): 均选用 **1N4002** 或类似。

3.6 保护电路设计

3.6.1 过流与短路保护

主要依赖 **LM317内部集成的保护功能**:

  • 限流保护: 输出电流超限时自动限制。
  • 热过载保护: 芯片结温过高时自动关断。
  • 安全工作区 (SOA) 补偿。

(可选) 外部折返式限流保护:可进一步降低短路时调整管功耗,但电路较复杂,本设计暂不采用。

熔断器 (Fuse): 在220V AC输入端安装 **1A慢熔型保险丝** 进行初级保护。

3.7 散热设计

LM317最大功耗估算 (最坏情况: Vin_reg_max=23V, Vout_min=1.25V, Iout_max=1.5A):

PD_max = (23V - 1.25V) × 1.5A = 32.625W

此功耗极高,常规TO-220封装需非常高效的散热。所需散热器热阻 θSA ≈ -2.9 ℃/W,表明此工况难以实现。

实际应用中,需优化输入电压或限制电流/电压范围以降低功耗。例如,输出12V, 1.5A, 输入18V时:

PD = (18V - 12V) × 1.5A = 9W

此时所需散热器热阻 θSA ≈ 3.94 ℃/W。这是一个可行的规格。

结论:必须为LM317配备合适的散热器,并注意避免长时间在极限压差和电流下工作。

电源性能仿真与分析 (基于LTSpice)

本节展示了通过LTSpice软件对所设计线性直流稳压电源进行的各项性能仿真。仿真旨在验证设计参数的合理性,并评估电源在不同工作条件下的实际表现。以下图表使用了符合设计目标的示例数据来直观展示预期性能。

直流输出电压调节特性

展示输出电压随调节电阻(R2)变化的特性,目标范围1.25V-15V。

输出纹波电压 (15V, 1.5A)

展示满载(1.5A)和15V输出时的输出纹波电压,目标 < 10mVpp。

线性调整率 (输出12V, 1.5A)

输入电压在220V±10%变化时,输出电压的稳定性,目标 < ±0.5%。

负载调整率 (输出12V)

负载电流从0.1A到1.5A变化时,输出电压的稳定性,目标 < ±1%。

瞬态响应 (12V, 0.1A to 1.5A step)

负载电流阶跃变化时,输出电压的过冲、下冲和恢复时间。

电源效率 (负载1A)

不同输出电压下,电源的转换效率。线性电源效率主要受Vout/Vin影响。

结论与展望

5.1 设计总结与成果

本设计详细阐述了一款输出电压1.25V至15V可调、最大输出电流1.5A的线性直流稳压电源的设计与仿真分析过程。通过合理的元件选型和参数计算,并利用LTSpice进行了性能仿真。仿真结果初步表明,所设计的电源能够满足预定的输出电压调节范围、电流能力、低纹波、良好的调整率和瞬态响应等性能指标。设计中重点关注了LM317的应用及其散热问题。

5.2 存在问题与改进方向

  • 效率问题: 线性电源固有缺点,特别是在低输出电压、大电流时,效率较低,发热量大。未来可考虑预稳压或多抽头变压器优化。
  • 0V起调: LM317最低输出1.25V。实现0V起调需更复杂电路。
  • 散热挑战: 在极限工况下,LM317功耗大,对散热要求极高。实际应用中需严格控制工作条件或加强散热。
  • 保护功能: 可考虑增加更精细的外部可调过流保护和输出过压保护。

5.3 未来展望

线性直流稳压电源在低噪声、高稳定性应用中仍具优势。未来发展趋势包括LDO性能的持续优化(更低压差、静态电流、噪声,更高PSRR)、更高集成度与智能化(数字控制、监测)、与其他电源技术融合(如SMPS+LDO混合方案)以及新材料新工艺的应用,以满足日益严苛的电子设备供电需求。

参考文献

  1. [1] Monolithic Power Systems. 稳压器类型及其工作原理 | 技术文章 | MPS.https://www.monolithicpower.cn/cn/learning/resources/voltage-regulator-types
  2. [2] Cadence Design Systems. Key Considerations for Linear Power Supply Design.https://resources.pcb.cadence.com/blog/2023-key-considerations-for-linear-power-supply-design
  3. [3] Monolithic Power Systems. Understanding AC/DC Power Supply | Article | MPS.https://www.monolithicpower.com/en/learning/resources/ac-dc-power-supply-basics
  4. [4] ElProCus. Regulated Power Supply : Block Diagram, Characteristics, and ....https://www.elprocus.com/regulated-power-supply-circuit-working-applications/
  5. [5] Analog Devices. AN-140:线性调节器和开关模式电源的基本概念.https://www.analog.com/cn/resources/app-notes/an-140.html
  6. [6] Power Electronics News. Power Supply Design Tutorial.https://www.powerelectronicsnews.com/power-supply-design-tutorial/
  7. [7] Monolithic Power Systems. 开关电源的用途、优点以及工作原理.https://www.monolithicpower.cn/cn/learning/resources/switching-power-supply
  8. [8] RECOM. 用于直流-直流(DC/DC) 转换的开关稳压器与线性稳压器的优缺点对比.https://recom-power.com/zh/rec-n-the-advantages-and-disadvantages-of-switching-regulators-versus-linear-regulators-for-dc!sdc-conversion-398.html
  9. [9] ROHM Semiconductor. 线性稳压器的基础.https://fscdn.rohm.com/cn/products/databook/applinote/ic/power/linear_regulator/linear_reg_basic_appli-c.pdf
  10. [10] Renesas Electronics. 理解线性稳压器及其主要性能参数.https://www.renesas.cn/zh/document/whp/understanding-linear-regulators-and-their-key-performance-parameters
  11. [11] MDPI. Current Context and Research Trends in Linear DC–DC Converters.https://www.mdpi.com/2076-3417/12/9/4594
  12. [12] Texas Instruments. 线性和低压降(LDO) 稳压器 | TI.com.cn.https://www.ti.com.cn/zh-cn/power-management/linear-regulators-ldo/overview.html
  13. [13] Texas Instruments. 线性稳压器基础知识.https://www.ti.com/cn/lit/pdf/zhca563
  14. [14] Analog Devices. LDO稳压器综合指南:噪声、折衷方案、应用和趋势.https://www.analog.com/cn/resources/analog-dialogue/articles/a-comprehensive-guide-to-ldo-regulators.html
  15. [15] Analog Devices. The Fundamentals of LDO Design and Applications.https://www.analog.com/en/lp/001/fundamentals-of-ldo-design-and-applications.html
  16. [16] Texas Instruments. Linear and Switching Voltage Regulator Fundamental Part 1.https://www.ti.com/lit/pdf/snva558
  17. [17] www.omchele.com. Key Differences between Two Supplies.https://www.omchele.com/linear-vs-switching-power-supply/#:~:text=Key%20Differences%20between%20Two%20Supplies&text=Size%20and%20Weight%3A%20Switching%20supplies,extra%20heat%20sinks%20for%20cooling.
  18. [18] Omchele. Linear vs Switching Power Supply: A Detailed Comparison.https://www.omchele.com/linear-vs-switching-power-supply/
  19. [19] All About Circuits. Linear Voltage Regulators vs. Switching Voltage Regulators.https://www.allaboutcircuits.com/technical-articles/linear-voltage-regulators-vs.-switching-voltage-regulators/
  20. [20] Cadence Design Systems. Linear vs. Switching Power Supply: A Comparison of Two DC Power Supply Designs.https://resources.pcb.cadence.com/blog/2022-linear-vs-switching-power-supply-a-comparison-of-two-dc-power-supply-designs
  21. [21] Wikipedia. Linear regulator.https://en.wikipedia.org/wiki/Linear_regulator
  22. [22] 金升阳官网. AC/DC开关电源简介.https://www.mornsun.cn/html/news-detail/exhibitionnews/726.html
  23. [23] TDK Corporation. 第2篇什么是开关电源?它的结构和电源革命的历史.https://www.tdk.cn/zh/tech-mag/power/002
  24. [24] 罗姆半导体集团. 全波整流和半波整流(AC/DC转换)_电子小百科.https://www.rohm.com.cn/electronics-basics/ac-dc-converters/acdc_what2
  25. [25] Power Integrations. DPA-Switch - DC-DC正激变换器设计指南.https://www.power.com/sites/default/files/documents/an31CN.pdf?language=zh-hans
  26. [26] CSDN博客. 最全滤波器详解_滤波电路.https://blog.csdn.net/weixin_45365488/article/details/132335943
  27. [27] Texas Instruments. 线性稳压器的工作原理.https://www.ti.com/cn/lit/pdf/zhca563#:~:text=%E7%BA%BF%E6%80%A7%E7%A8%B3%E5%8E%8B%E5%99%A8%E7%9A%84%E5%B7%A5%E4%BD%9C%E5%8E%9F%E7%90%86%E6%98%AF%EF%BC%9A%E9%87%87%E7%94%A8%E4%B8%80%E4%B8%AA,%E4%BF%9D%E6%8C%81%E5%9C%A8%E6%9C%9F%E6%9C%9B%E7%9A%84%E6%95%B0%E5%80%BC%E3%80%82&text=%E2%97%8F-,%E7%94%B5%E6%B5%81%E6%BA%90%E7%9A%84%E8%AE%BE%E8%AE%A1%E6%9E%81%E9%99%90%E9%99%90%E5%AE%9A%E4%BA%86%E7%A8%B3%E5%8E%8B%E5%99%A8,%E7%9A%84%E6%9C%80%E5%A4%A7%E8%B4%9F%E8%BD%BD%E7%94%B5%E6%B5%81%E3%80%82
  28. [28] 罗姆半导体. 线性稳压器的工作原理_电子小知识.https://www.rohm.com.cn/electronics-basics/dc-dc-converters/dcdc_what6
  29. [29] 东芝半导体. 1-7.串联稳压器工作原理.https://toshiba-semicon-storage.com/cn/semiconductor/knowledge/e-learning/basics-of-low-dropout-ldo-regulators/chap1/chap1-7.html
  30. [30] Educypedia. HB206-D (ON Semiconductor Handbook).http://educypedia.karadimov.info/library/HB206-D.PDF
  31. [31] Instructables. 78xx Regulators Ics.https://www.instructables.com/78xx-Regulators-Ics/
  32. [32] Electrocredible. LM317 IC: Pinout, Specifications, Circuits and Applications.https://electrocredible.com/lm317-ic-pinout-specifications-basics/
  33. [33] Wikipedia. Low-dropout regulator.https://en.wikipedia.org/wiki/Low-dropout_regulator
  34. [34] Power Electronics Talks. Linear Voltage Regulator.https://www.powerelectronicstalks.com/2019/01/linear-voltage-regulator.html
  35. [35] Texas Instruments. LM317 3-Pin Adjustable Regulator Datasheet.https://www.ti.com/lit/ds/symlink/lm317.pdf
  36. [36] Seeed Studio Blog. LM7805 Voltage Regulator: Features, Comparisons and more.https://www.seeedstudio.com/blog/2019/10/30/lm7805-voltage-regulator-features-comparisons-lm317-and-more/
  37. [37] Allelco. LM317T Voltage Regulator: Alternatives, Pinout, and Datasheet.https://www.allelcoelec.com/blog/LM317T-Voltage-Regulator-Alternatives,Pinout,and-Datasheet.html
  38. [38] MakerHero. LM317 3-Terminal Adjustable Regulator Datasheet.https://www.makerhero.com/img/files/download/LM317-Datasheet.pdf
  39. [39] Allelco. LM7805 Comprehensive Guide: Pin Assignments, Parameters, and Applications.https://www.allelcoelec.com/blog/lm7805-comprehensive-guide-pin-assignments,parameters,and-applications.html
  40. [40] Components101. 7805 Voltage Regulator IC Pinout, Features, Circuit, Equivalent ....https://components101.com/ics/7805-voltage-regulator-ic-pinout-datasheet
  41. [41] Electronics For You. LM317 Voltage Regulator.https://www.electronicsforu.com/resources/learn-electronics/lm317-voltage-regulator
  42. [42] Anypcba. LM7805 Voltage Regulator Circuit: A Comprehensive Guide.https://www.anypcba.com/blogs/electronic-component-knowledge/lm7805-voltage-regulator-circuit-a-comprehensive-guide.html
  43. [43] SparkFun. LM7805 Datasheet.https://cdn.sparkfun.com/assets/1/7/7/3/2/LM7805.pdf
  44. [44] Allelco. LM317 Voltage Regulator : Pinout, Circuit, Comparison with LM7805.https://www.allelcoelec.com/blog/LM317-Voltage-Regulator-Pinout-Circuit-Comparison-with-LM7805-and-Datasheet-Overview.html
  45. [45] Alldatasheet.com. LM7805 Datasheet.https://www.alldatasheet.com/view.jsp?Searchword=lm7805
  46. [46] Texas Instruments. LM7805 Datasheet.https://www.ti.com/lit/ds/symlink/lm7805.pdf
  47. [47] Instructables. LINEAR VOLTAGE REGULATORS 78XX : 6 Steps.https://www.instructables.com/LINEAR-VOLTAGE-REGULATORS-78XX/
  48. [48] Cirkit Designer. How to Use LM78xx Voltage Regulator: Pinouts, Specs, and Examples.https://docs.cirkitdesigner.com/component/8dff0261-f836-40c8-ba14-9022178116b5/lm78xx-voltage-regulator
  49. [49] 100y.com.tw. LM317 PowerBoard PDF.http://images.100y.com.tw/pdf_file/57-LM317-PowerBoard.pdf
  50. [50] Micros sp. z o.o. ST317g_HAN_HGC_0001.pdf (LM317 Datasheet).https://www.micros.com.pl/mediaserver/ST317g_HAN_HGC_0001.pdf
  51. [51] Cystek. LM317E3.pdf (LM317 Datasheet).https://ftp01.cystekec.com/LM317E3.pdf
  52. [52] Onsemi. LM317 - Voltage Regulator – Adjustable Output, Positive ... Datasheet.https://www.onsemi.com/download/data-sheet/pdf/lm317-d.pdf
  53. [53] Electronics Stack Exchange. Ripple voltage filtering capacitor.https://electronics.stackexchange.com/questions/636422/ripple-voltage-filtering-capacitor
  54. [54] Multisim Live. Line and Load Regulation.https://www.multisim.com/content/waFDPhfbZC7SFnc3EeRF8E/line-and-load-regulation/
  55. [55] IC Components. Understanding LM317 for Adjustable Three-Terminal Regulators.https://www.ic-components.com/blog/understanding-lm317-for-adjustable-three-terminal-regulators.jsp
  56. [56] EDN Network. PWM-programmed LM317 constant current source.https://www.edn.com/pwm-programmed-lm317-constant-current-source/
  57. [57] SlideShare. Adjustable dc power supply ppt.https://www.slideshare.net/slideshow/adjustable-dc-power-supply-ppt/77041015
  58. [58] ResearchGate. (PDF) Power Regulator Design Using LM317 for Precise and .... https://www.researchgate.net/publication/387599975_Power_Regulator_Design_Using_LM317_for_Precise_and_Efficient_Power_Management
  59. [59] Circuit-Zone.com. Electronic Schematics (Power Supplies).https://circuit-zone.com/schematics.php?cat=power_supplies
  60. [60] Renesas. Understanding Linear Regulators and their Key Performance Parameters (LDOs).https://www.renesas.com/en/doc/whitepapers/linear-regulator/understanding-ldos.pdf
  61. [61] Analog Devices. 电源的输入和负载瞬态响应测试.https://www.analog.com/cn/resources/technical-articles/line-and-load-transient-testing-for-power-supplies.html
  62. [62] Tektronix. 理解线性电源指标.https://download.tek.com/document/Series2200_AppNote-CN.pdf
  63. [63] Texas Instruments. SLVA072 (LDO Performance Characteristics).https://www.ti.com/lit/an/slva072/slva072.pdf
  64. [64] Prodigit Electronics. Power Supply Functional Testing.scdn.rohm.com/cn/products/databook/applinote/ic/power/linear_regulator/linearreg_spec_appli-c.pdf" target="_blank" rel="noopener noreferrer" class="text-sky-600 hover:text-sky-800 hover:underline">https://fscdn.rohm.com/cn/products/databook/applinote/ic/power/linear_regulator/linearreg_spec_appli-c.pdf
  65. [66] Analog Devices. 理解低压差稳压器(LDO) 实现系统优化设计.https://www.analog.com/cn/resources/analog-dialogue/articles/understand-ldo-concepts.html
  66. [67] Prodigit Electronics. Power Supply Functional Testing (PARD definition).https://www.prodigit.com/show/power-supply-functional-testing.htm#:~:text=PARD%20is%20the%20periodic%20and,voltage%20after%20regulation%20and%20filtering.
  67. [68] 广州立功科技股份有限公司. 电源管理https://www.zlgmcu.com/ppowermanage/ppowermanage/index.html
  68. [69] 罗姆电源设计R课堂. 效率和热计算 - 电子设计基础信息网站.https://techclass.rohm.com.cn/knowledge/dcdc/s-dcdc/01-s-dcdc/82
  69. [70] Analog Devices. 影响开关模式、DC-DC转换器效率的主要因素.https://www.analog.com/cn/resources/technical-articles/an-efficiency-primer-for-switchmode-dcdc-converter-power-supplies.html
  70. [71] Cadence Blogs. 详解时域瞬态分析技术- PCB、IC封装.https://community.cadence.com/cadence_blogs_8/b/pcbchn/posts/1356414
  71. [72] Nisshinbo Micro Devices. What Is a Linear Regulator (LDO Regulator)? Part 2 | Design Supports.https://www.nisshinbo-microdevices.co.jp/en/design-support/basic/03-linear-regulator.html
  72. [73] All About Circuits. Thermal Design with Linear Voltage Regulators - Technical Articles.https://www.allaboutcircuits.com/technical-articles/thermal-design-with-linear-voltage-regulators/
  73. [74] ROHM Semiconductor. How to Use the Thermal Resistance and Thermal Characteristics Parameters.https://fscdn.rohm.com/en/products/databook/applinote/common/how_to_use_the_rth_and_thermal_characteristics_parameters_an-e.pdf
  74. [75] Texas Instruments. SLVA462 (Thermal Design Guide).https://www.ti.com/lit/an/slva462/slva462.pdf
  75. [76] Infineon Technologies. 用于汽车应用的线性稳压器 | OPTIREG™ linear.https://www.infineon.com/cms/cn/product/power/linear-voltage-regulator/linear-voltage-regulators-for-industrial-applications/
  76. [77] Analog Devices. AN-140: Basic Concepts of Linear Regulator and Switching Mode Power Supplies.https://www.analog.com/en/resources/app-notes/an-140.html
  77. [78] Analog Devices. AN32 - High Efficiency Linear Regulators.https://www.analog.com/media/en/technical-documentation/application-notes/an32f.pdf
  78. [79] openPR.com. Global DC Linear Regulated Power Supply Market Growth Analysis 2025-2031.https://www.openpr.com/news/3909238/global-dc-linear-regulated-power-supply-market-growth-analysis
  79. [80] ROHM Semiconductor. How to Select Rectifier Diodes.https://fscdn.rohm.com/en/products/databook/applinote/discrete/diodes/how_to_select_rectifier_diodes_an-e.pdf
  80. [81] Anypcba. Unveiling the 1N4001 Diode: Your Essential Guide to Rectification.https://www.anypcba.com/blogs/electronic-component-knowledge/unveiling-the-1n4001-diode-your-essential-guide-to-rectification.html
  81. [82] Electronics Tutorials. Full Wave Rectifier and Bridge Rectifier Theory.https://www.electronics-tutorials.ws/diode/diode_6.html
  82. [83] Scribd. Power Supply Design (Rod Elliott).https://www.scribd.com/document/707923126/power-supply-design
  83. [84] Electronics Tutorials. Voltage Regulation of a Transformer Under Load.https://www.electronics-tutorials.ws/transformer/voltage-regulation.html
  84. [85] AudioFaiDaTe. How to specify power transformer & filter ratings.https://audiofaidate.org/it/materiale/20_020_020_001_PowerTransformer_FilterRatings.pdf
  85. [86] Elliott Sound Products. Linear Power Supply Design.https://sound-au.com/power-supplies.htm
  86. [87] diyAudio. How do you calculate for an AC transformer in VA for DC current draw?.https://www.diyaudio.com/community/threads/how-do-you-calculate-for-an-ac-transformer-in-va-for-dc-current-draw.410764/
  87. [88] CircuitBread. Transformer - Power Supply | Lessons in Electric Circuits: Volume VI - Experiments.https://www.circuitbread.com/textbooks/lessons-in-electric-circuits-volume-vi-experiments/ac-circuits/transformer-power-supply
  88. [89] Metapower Solutions. Common Mistakes in Transformer Sizing: Avoid These Errors.https://metapowersolutions.com/common-mistakes-to-avoid-in-transformer-sizing/
  89. [90] All About Circuits. Practical Considerations - Transformers | Transformers | Electronics Textbook.https://www.allaboutcircuits.com/textbook/alternating-current/chpt-9/practical-considerations-transformers/
  90. [91] IEEE Canada. PREPARATION OF TRANSFORMER SPECIFICATIONS.http://r7.ieee.org/sas-pesias/wp-content/uploads/sites/47/2016/03/Preparation-of-Transformer-Specifications1.pdf
  91. [92] Sierra Circuits. Materials and Components for Power Electronics.https://www.protoexpress.com/blog/how-to-select-components-and-materials-for-power-electronics-pcbs/
  92. [93] Bel Fuse. Transformer Basics: Insulation Systems and Material Choices.https://www.belfuse.com/resource-library/blog/transformer-basics-insulation-systems-and-material-choices
  93. [94] Elliott Sound Products. Linear Power Supply Design - Part 2.https://sound-au.com/articles/power-supply-4.htm
  94. [95] Elliott Sound Products. Transformers Part 1 - Elliott Sound Products.https://sound-au.com/xfmr.htm
  95. [96] Elliott Sound Products. High Voltage, Low Current DC Source.https://sound-au.com/project238.htm
  96. [97] Power Electronics News. How to Select the Right Transformer for Your Power Supply Unit.https://www.powerelectronicsnews.com/how-to-select-the-right-transformer-for-your-power-supply-unit/
  97. [98] CHBEB ELE. Power Transformer Rating: A Comprehensive Guide for Electrical ....https://chbeb-ele.com/power-transformer-rating-a-comprehensive-guide-for-electrical-engineers/
  98. [99] Elliott Sound Products. Rectifiers - Elliott Sound Products.https://sound-au.com/articles/rectifiers.htm
  99. [100] Electronics Tutorials. Power Diodes used as Half-wave Rectifiers.https://www.electronics-tutorials.ws/diode/diode_5.html
  100. [101] DCAClab Blog. Full Wave Bridge Rectifier Circuit.https://dcaclab.com/blog/full-wave-bridge-rectifier-circuit/
  101. [102] YouTube. Tutorial 9: Bridge Rectifier with Capacitor Filter.https://www.youtube.com/watch?v=EfSW_9lx1VE
  102. [103] YouTube. Building a Linear Power Supply, Part 2 - The Rectifier and Filter.https://www.youtube.com/watch?v=K7yr0mxsq4s
  103. [104] Making Easy Circuits. Rectifier Diode PIV, IF Explained.https://makingcircuits.com/blog/rectifier-diode-piv-if-explained/
  104. [105] Electronics Stack Exchange. Difference between a rectifier diode and signal diode.https://electronics.stackexchange.com/questions/27217/difference-between-a-rectifier-diode-and-signal-diode
  105. [106] 德州仪器. 理想二极管基础知识.https://www.ti.com.cn/cn/lit/an/zhcab91b/zhcab91b.pdf
  106. [107] RS Components. AN-1006 功率二极管参数及特性介绍.https://docs.rs-online.com/8c51/A700000008793662.pdf
  107. [108] Wikipedia. Current limiting.https://en.wikipedia.org/wiki/Current_limiting
  108. [109] Electronics Notes. Rectifier Diode Selection: How to Choose.https://www.electronics-notes.com/articles/electronic_components/diode/rectifier-diode-selection-how-to-choose.php
  109. [110] ISCVE. EngineeringNote-16.2-rectifier-filter-capacitors.pdf.https://www.iscve.org.uk/wp-content/uploads/EngineeringNote-16.2-rectifier-filter-capacitors.pdf
  110. [111] Making Easy Circuits. How to Calculate Filter Capacitor for Smoothing Ripple.https://makingcircuits.com/blog/calculate-filter-capacitor-smoothing-ripple/
  111. [112] LGESEMI Company. How Does a Full Bridge Rectifier with Capacitor Filter Work?.https://www.lgesemi.com/blog/industry-news-7/how-does-a-full-bridge-rectifier-with-capacitor-filter-work-287
  112. [113] Power Electronic Tips. Choosing a capacitor? Ripple current capability matters as much as Farads.https://www.powerelectronictips.com/choosing-capacitor-ripple-current-capability-matters-farads/
  113. [114] passive-components.eu. Ripple Current and its Effects on the Performance of Capacitors.https://passive-components.eu/ripple-current-and-its-effects-on-the-performance-of-capacitors/
  114. [115] Texas Instruments. SLYT320 (Capacitor selection for LDOs).https://www.ti.com/lit/an/slyt320/slyt320.pdf
  115. [116] Analog Devices. Practical Power Solutions (Section 4: Capacitors).https://www.analog.com/media/en/training-seminars/design-handbooks/Practical-Power-Solutions/Section4.pdf
  116. [117] Electronics Stack Exchange. Selecting a capacitor / ripple current / ESR.https://electronics.stackexchange.com/questions/657079/selecting-a-capacitor-ripple-current-esr
  117. [118] 火炬电子. 关于滤波电容、去耦电容、旁路电容作用及其原理.http://www.torch.cn/news_info.php?id=309
  118. [119] 罗姆电子设计基础信息网站. 输入电容器选型要着眼于纹波电流、ESR、ESL.https://techclass.rohm.com.cn/tech-info/engineer/2789
  119. [120] 南华大学图书馆. AW01280513.pdf (Multi-output DC power supply design).https://libap.nhu.edu.tw:8081/Ejournal/AW01280513.pdf
  120. [121] Hans Publishers. sea20210400000_17066142.pdf (Digitally controlled linear power supply).https://pdf.hanspub.org/sea20210400000_17066142.pdf
  121. [122] OFweek. 开关电源设计之基础篇.http://www.ofweek.com/Upload/whitepaper/2010-10/David/SMPS.pdf
  122. [123] Omni Calculator. LC Filter Calculator.https://www.omnicalculator.com/physics/lc-filter
  123. [124] Altium Resources. Pi Filter Circuit Design Formulas and Calculator.https://resources.altium.com/p/pi-filter-circuit-design-formulas-and-calculator
  124. [125] HardwareBee Semipedia. Pi Filter - The Ultimate Guide.https://hardwarebee.com/WikiBee/pi-filter/
  125. [126] EDAboard. Filtering ripples in power supply.https://www.edaboard.com/threads/filtering-ripples-in-power-supply.406172/
  126. [127] Ridley Engineering. Second-Stage LC Filter Design.https://ridleyengineering.com/images/phocadownload/1%20second%20stage%20filter%20design.pdf
  127. [128] Altium (中国). 用于电源的Pi型滤波器.https://resources.altium.com.cn/p/pi-filter-designs-power-supplies
  128. [129] 松下电器机电. LC滤波器的基础知识.https://industrial.panasonic.cn/ea/ss/technical/b4
  129. [130] Analog Devices. Switching Regulator Noise Reduction with an LC Filter.https://www.analog.com/en/resources/technical-articles/switching-regulator-noise-reduction-with-an-lc-filter.html
  130. [131] Q Microwave. LC High Pass Filter Design Made Simple: A Guide for RF Engineers.https://qmicrowave.com/blog/lc-high-pass-filter-design-made-simple-a-guide-for-rf-engineers
  131. [132] Quarktwin. Understanding Power Supply Ripple: Measuring, and Mitigating its Effects.https://www.quarktwin.com/blogs/diy%20device/understanding-power-supply-ripple-measuring-and-mitigating-its-effects/399
  132. [133] Cadence PCB Design & Analysis. LC Filter for Power Supply Design Tips.https://resources.pcb.cadence.com/circuit-optimization-and-simulation/lc-filter-for-power-supply-design-tips
  133. [134] Reddit. Low Pass filter for linear power supply : r/diyelectronics.https://www.reddit.com/r/diyelectronics/comments/1h02jim/low_pass_filter_for_linear_power_supply/
  134. [135] Keysight. Low Pass Filter Calculator. 检索日期:2025年5月30日. https://www.keysight.com/used/cz/en/knowledge/calculators/low-pass-filter-calculator
  135. [136] Omni Calculator. Low Pass Filter Calculator.https://www.omnicalculator.com/physics/low-pass-filter
  136. [137] DigiKey Electronics. RC and RL Passive Filter Calculator.https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-low-pass-and-high-pass-filter
  137. [138] Cadence PCB Design & Analysis. LC Filter for Power Supply Design Tips.https://resources.pcb.cadence.com/blog/lc-filter-for-power-supply-design-tips
  138. [139] EEVblog. Calculating output of a CLC filter for to design AC-DC Converter.https://www.eevblog.com/forum/beginners/calculating-output-of-a-clc-filter-for-to-design-ac-dc-converter/
  139. [140] Mouser Electronics. Coilcraft_Baiscs_Inductor_Selection.pdf.https://www.mouser.com/pdfDocs/Coilcraft_Baiscs_Inductor_Selection.pdf
  140. [141] Coilcraft. Basics of Inductor Selection (from Electronic Design magazine).https://www.coilcraft.com/en-us/resources/application-notes/basics-of-inductor-selection-(from-electronic-desi/
  141. [142] Reddit. Correctly choosing capacitors — ripple current rating : r/AskElectronics.https://www.reddit.com/r/AskElectronics/comments/9l76vu/correctly_choosing_capacitors_ripple_current/
  142. [143] All About Circuits. Designing LC and CLC Filters for Power Supplies.https://www.allaboutcircuits.com/technical-articles/designing-lc-and-clc-filters-for-power-supplies/
  143. [144] Altium Designer. Pi Filter Designs for Power Supplies.https://resources.altium.com/p/pi-filter-designs-power-supplies
  144. [145] ElProCus. Pi Filter : Circuit Diagram,Working, Characteristics and Its Applications.https://www.elprocus.com/pi-filter-circuit-working-and-its-applications/
  145. [146] DIYguru. What Is A Pi Filter.https://diyguru.org/term/what-is-a-pi-filter/
  146. [147] All About Circuits Forum. Designing a Pi filter as input of dc dc converter.https://forum.allaboutcircuits.com/threads/designing-a-pi-filter-as-input-of-dc-dc-converter.191262/
  147. [148] Electrical Engineering Stack Exchange. Power Supply Input Filter.https://electronics.stackexchange.com/questions/542731/power-supply-input-filter
  148. [149] Electronics Stack Exchange. Pi filter design for SMPS output ripple.https://electronics.stackexchange.com/questions/480784/pi-filter-design-for-smps-output-ripple
  149. [150] Newark. Circuit Protections for Power Supplies & Converters.https://www.newark.com/pdfs/techarticles/lambda/CPPSC.pdf
  150. [151] All About Circuits. Diode Ratings | Diodes and Rectifiers | Electronics Textbook.https://www.allaboutcircuits.com/textbook/semiconductors/chpt-3/diode-ratings/
  151. [152] RECOM. 过压、过流和短路保护.https://recom-power.com/zh/rec-n-why-overvoltage,-overcurrent,-and-short-circuit-protection-are-important-in-power-supplies-416.html
  152. [153] PCBasic. Current Limiting Circuits: The Ultimate Guide.https://www.pcbasic.com/blog/current_limiting_circuits.html
  153. [154] Electronics Tutorials. Active Band Pass Filter.https://www.electronics-tutorials.ws/filter/filter_7.html
  154. [155] Cadence System Analysis. Power Supply Overload Protection Using the Foldback Current ....https://resources.system-analysis.cadence.com/blog/msa2021-power-supply-overload-protection-using-the-foldback-current-limiting-technique
  155. [156] EEVblog. Foldback Current Limiting - an example.https://www.eevblog.com/forum/beginners/foldback-current-limit-lm723-example/
  156. [157] Codrey Electronics. Foldback Current Limiting – Little Secrets.https://www.codrey.com/learn/foldback-current-limiting-little-secrets/
  157. [158] Wilfrid Laurier University Physics Labs. LTspice Tutorial.http://denethor.wlu.ca/ltspice/
  158. [159] All About Circuits. Basic Circuit Simulation with LTspice - Technical Articles.https://www.allaboutcircuits.com/technical-articles/basic-circuit-simulation-with-ltspice/
  159. [160] Grad Coach. How To Write A Dissertation Conclusion (Examples + Template).https://gradcoach.com/dissertation-conclusion-chapter/
  160. [161] Georgia Institute of Technology. How to Write Acknowledgements in a Dissertation.https://esl.gatech.edu/sites/default/files/LI/li-how_to_write_acknowledgements_in_a_dissertation.pdf
  161. [162] University of North Carolina at Charlotte. circuit-analysis-with-multisim.pdf.https://ece.charlotte.edu/wp-content/uploads/sites/301/2023/05/circuit-analysis-with-multisim.pdf